
LA-UR-15-20503
Approved for public release; distribution is unlimited.

Title: Code Disentanglement: Initial Plan

Author(s): Wohlbier, John Greaton
Kelley, Timothy M.
Rockefeller, Gabriel M.
Calef, Matthew Thomas

Intended for: Report

Issued: 2015-01-27



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



research note
Computer, Computational, and Statistical Sciences

Division

CCS–7: Applied Computer Science, CCS–2: Computa-

tional Physics & Methods

To/MS: Distribution
From/MS: John Wohlbier (CCS–2)

Tim Kelley (CCS–7)
Gabriel Rockefeller (CCS–2)
Matt Calef (CCS–2)

Phone/FAX: (7-3965)
Symbol: CCS–7–036

Date: April 23, 2014

Subject: Code Disentanglement: Initial Plan
Revision: 1.0

1 Overview

The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set
of independent, levelized packages. We define a package as a collection of code, most often across a set of
files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b)
fits within an overall levelization design. Each package contributes one or more libraries, or an application
that uses the other libraries. A package set is levelized if the relationships between packages form a directed,
acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship
is often describable by the use relationship between modules). Independent packages permit independent—
and therefore parallel—development. The packages form separable units for the purposes of development
and testing. This is a proven path for enabling finer–grained changes to a complex code.

EAP-‐FA	  Plan	  
I.  Restructure	  code	  

A.  Factor	  into	  N	  packages	  
B.  Develop	  package	  interfaces	  

II.  Clean	  up	  individual	  packages	  
A.  Cut	  redundant	  code	  
B.  Organize	  code	  to	  reflect	  logical	  structure	  

III.  Migrate	  to	  target	  soCware	  architecture	  

this	  effort	  

Figure 1: How this effort fits into the larger EAP–FA plan.

In this memo, we use physical independence to refer to code that has been partitioned into packages.
Physical independence does not imply logical completeness. For example, we expect that we can form
separate Hydro and EOS packages. This does not mean that a correct hydrodynamics simulation can be
performed without reference to an equation of state. Rather, it means that a higher–level component will
coordinate calls to each package, instead of packages mutually calling one another.

This memo outlines a plan for transforming the EAP code base into a levelized set of packages with
well–defined interfaces. The relationship between the work described here and the larger EAP–FA effort is
shown in Fig. 1: this undertaking is only the first step. Subsequent efforts will clean up within individual
packages and then migrate code to the target architecture—a software architecture that responds to future
compute architectures.

The criterion for determining whether a package has been successfully transformed is that it can be built
and tested independently of other packages at the same or higher levels in the levelization diagram. This



Code Disentanglement: Initial Plan
CCS–7–036 -2- April 23, 2014

Figure 2: A very preliminary target level diagram for EAP codes.

ensures that the package does not participate in circular dependencies. When we arrive at the point at which
the set of packages is levelized, we expect to be able to build the application with a simple link line—one in
which no library appears twice.

We view complete packagization of xRage as a very substantial task (see, for example, Fig. 4, p. 3). We
propose to begin with the existing directory structure, examining directory-level dependencies and trans-
forming from intertwined directories to actual packages. We will migrate to the set of packages indicated by
the EAP Physical Model, which is described in part by the (notional) levelization diagram (Fig. 2).1

We plan to begin by transforming one package whose dependencies we have already studied. The expe-
rience of packagizing one capability will inform our time estimates for packagizing the rest of the code. We
believe an estimate of the amount of work required to transform the whole code will be much more accurate
after the work proposed in this document has been completed, i.e., once we have empirical evidence of how
much work it takes to clean up one package.

The recipe for packagizing a directory is summarized below:

1. Identify the dependencies between the selected package and other packages, using butterfly diagrams
as described in § 2.

2. For each circular dependence, decide whether to eliminate the connection completely by deprecating
the code in question.

3. If a circular connection is not eliminated, make the connection one directional. We discuss criteria for
this decision below and in § 5, but steps include checking test coverage of the code in question and
examining the physical and logical coupling between the packages.

Once a decision is made about how to change a connection between packages, the package needs to be
transformed. A set of transformations that achieve this levelization may be summarized as “out, split, and
up”:

1. Move data and code that is used by multiple packages into a separate package (out).

2. Split a subroutine in one package A that calls code from another package B into two subroutines
bracketing the call (split).

1Joann Campbell has pointed out that the Physical Model should not be confused with the Physics Model. While physics
code (as well as non–physics code) is decomposed into packages according to the Physical Model, the Physics Model describes
the relationships between different physics, including necessary ordering. The Physics Model describes protocols, while the
Physical Model describes only how code is separated into packages.



Code Disentanglement: Initial Plan
CCS–7–036 -3- April 23, 2014

Hydro	  
datum	  c	  

subrou.ne	  A	  

subrou.ne	  B	  

Strength	  
datum	  f	  

subrou.ne	  D	  

subrou.ne	  E	  

(a)

Hydro	  

subrou*ne	  A1	  

subrou*ne	  B	  

Strength	  

subrou*ne	  D1	  

subrou*ne	  E	  

Hydro-‐Strength	  Driver	  

call	  Hydro.A1()	  
call	  Strength.D1(HydroData.c)	  
call	  Hydro.A2()	  
...	  

HydroData	  

datum	  c	   datum	  f	  

StrengthData	  

subrou*ne	  A2	   subrou*ne	  D2	  

(b)

Figure 3: Resolving circular package dependencies. (a) A typical circular depen-
dency pattern between packages. (b) The same code after applying the “out” and
“up” transformations. Data used by multiple packages have been moved out into
separate packages. Code calls into separate packages are moved up into a com-
mon driver package that expresses the logical interleaving of the packages, while
maintaining the physical decoupling. Note the absence of any lines from Hydro to
HydroData: data required by subroutines in Hydro is passed in as explicit argu-
ments by the driver, not via use statements. Of course, other packages may need
to be integrated into this driver as well.



Code Disentanglement: Initial Plan
CCS–7–036 -4- April 23, 2014

3. Move calls in package A to code from package B into a separate driver package (up). Replace package
A’s use of data from package B with explicit parameters in package A’s interface.

These steps are illustrated in Fig. 3, p. 3. Many developers over the history of the project have pointed out
the utility of this transformation and the resulting package structure.

A key aspect of the Rage architecture that must be accounted for is the extras–chaining mechanism. This
mechanism is central to the application architecture for Rage. Essentially, extras–chains give the application
a flexible mechanism to respond to runtime configuration information, such as which physics a user wants to
use. Each chain also expresses an ordering between packages at a specific point in the calculation (whether or
not that ordering is necessary). Extras–chains are involved in initialization, cycle execution, and finalization.
As part of this initial effort, we will attempt to raise the extras–chaining to the driver levels. We will also
examine alternatives that support a simpler method of accomodating runtime configuration.

Note that this process described so far captures only circular dependencies of the form A-B-A; and does
not reveal dependencies of the form A-B-C-A and so on. Such longer loops do exist—e.g., in the extras–
chains—but the larger process of moving the overall code into better agreement with the Physical Model
will necessarily unravel those dependencies.

This is our first version of a method for detangling code packages. We will apply this to one package—
Hydro—to begin with, observing any changes that need to be made. The result of our initial effort will
be:

1. A Hydro package with no use statements for packages at the same level or higher;

2. A clear interface that expresses what any xRage hydro implementation must provide;

3. A method that we can repeat with subsequent packages.

As we gain confidence with the method, we will begin to work in parallel on a second package (Radiation),
and we will confirm that the method is sound or make any necessary adjustments. At that point the method
will be ready for wider–scale application, and we will engage the full EAP–FA team in this effort.

Once a directory has been successfully packagized and package interfaces have been defined, additional
clean–up work can commence. Code within the package can be transformed subject to the contract of the
upward interface. For example, we can define requirements for interfaces to lower packages and mitigate
code redundancy.

The rest of this memo is organized as follows:

• § 2 describes how we selected and prioritized the first packages for packagization. In particular, we will
begin with the Hydro package.

• § 3 describes how we analyzed the dependencies between Hydro and other packages.

• § 4 describes how we prioritize which changes within Hydro to make.

• § 5 describes code transformations in greater detail.

• § 6 lists completion criteria and what we expect to immediately follow the completion and dissemination
of this memo.

2 Package Selection

xRage does not currently have packages as defined in § 1, rather it has directories containing files that have
commonality in function. In particular the directories can not be built and tested as entities, nor were they
created as part of a levelization design. The process described here moves from present directories to future
packages.

Before diving into this cleanup activity we wanted to carefully choose the first set of directories to address.
This section describes how we chose the Hydro directory as our first candidate, and the directories that would
immediately follow the cleanup of Hydro. We set the following criteria to help us make our choice:



Code Disentanglement: Initial Plan
CCS–7–036 -5- April 23, 2014

1. The directory should represent a physics package, and not some auxiliary package like checkpoint
reading and writing or an input parser.

2. The physics package should be commonly used and not a less frequently used physics capability like
self-gravity.

3. The Subject Matter Expert (SME) for the physics capability should be interested in and willing to
help with our activity.

4. The physics package should be well covered by tests.

5. The complexity of the interdependencies of the chosen package with other packages should be non-
trivial, where metrics for complexity will be described below.

6. The complexity of the interdependencies of the chosen package with other packages should not be
overwhelmingly difficult.

7. The team members should have some level of familiarity with the physics package so as to eliminate
complete reliance on SMEs.

The initial candidate directories were (in alphabetical order):

• EOS (equation of state)

• HEBurn (high explosives)

• Hydro

• Iso (isotopics)

• Plasma

• Radiation (radiation diffusion)

• Strength

• TNBurn (thermonuclear burn)

• Turbulence

Note that the mesh is not included in the list of initial candidates for packagization. While the mesh is
certainly a candidate to be made into a package, executing the overall packagization process in a “top-down”
fashion, starting with conventionally-recognized physics packages, allows us to catalog usage patterns of
lower-level packages like “mesh” and prepares us to define interfaces to those packages.

We relied on Understand to measure complexity of directory interdependencies. Understand provides
source level analysis and creates dependency graphs between directories and source files. The directory level
dependencies for Source.rh are shown in Fig. 4. Understand draws a blue line connecting directories where
at least one file in one of the directories depends on at least one file in the other directory. The arrow points
to the “depended on” directory. Red lines are drawn when at least one file in the first directory depends on
at least one file in the second directory, and at least one file in the second directory depends on at least one
file in the first directory. This is what we refer to as a circular directory level dependency.

A more useful diagram for any one directory is a butterfly dependency graph. The butterfly dependency
graph simply takes the directory in question and draws the directories that it is connected to. The lines
are again blue and red and have the same meaning as previously stated. Butterfly dependency graphs for
the directories we listed as candidates are shown in Figs. 5, 6, 15–21. Most of these figures are found in
Appendix A.



Code Disentanglement: Initial Plan
CCS–7–036 -6- April 23, 2014

Figure 4: Directory level dependency of Source.rh. Blue lines indicate unidirectional dependence. Red lines
indicate circular directory level dependence. An electronic version of this document allows zooming in on
this figure.



Code Disentanglement: Initial Plan
CCS–7–036 -7- April 23, 2014

Figure 5: Butterfly dependency graph for Turbulence.

The numbers on the lines connecting two directories indicate the number of explicit dependencies of files
in the first directory on files in the second directory. In the case of a circular directory dependency there
are two numbers. The numbers in this case mean the same thing and the number closest to a directory is
the number of dependencies of that directory on the other. The relative size of the numbers are instructive
in that they can tell one what the dependency “should be.” Looking at the line connecting Turbulence to
Mesh in Fig. 5 one sees that Turbulence depends on Mesh several orders of magnitude more times than Mesh
depends on Turbulence. This indicates that the true dependency should be of Turbulence on Mesh and the
7 dependencies in the other direction should be removed. Of course this determination of true dependencies
also needs to be guided by intuition.

To quantify the interdependence of a directory on other directories we define the following metrics.

• CC: Coarse circular. The number of red lines connected to a directory. This number measures how
many directories are connected to a directory with circular dependencies.

• FC1: Fine circular 1. Add up the smaller of the two numbers on every red line. If one were to remove
all circular directory level dependencies at once this is the number of dependencies that would have to
be removed to eliminate circular dependencies.

• FC2: Fine circular 2. Add up the smaller of the two numbers on all red lines where the directory in
question is the smaller of the two numbers. The idea here is that we only consider outgoing dependencies
from a directory when it should only have incoming dependencies from another directory, i.e., when
the directory in question is the smaller of the two numbers on a red line. Eventually application of
this process on all directories would remove all circular directory level dependencies.

The dependency breaking processes described in the details for FC1 and FC2 will both lead to eventual
elimination of all circular dependencies. It is our view, however, that following the procedure outlined in
FC2 will be an easier approach.



Code Disentanglement: Initial Plan
CCS–7–036 -8- April 23, 2014

Directory CC FC1 FC2
EOS 9 661 514

HEBurn 4 175 67
Hydro 11 1551 916

Iso 2 261 4
Plasma 4 45 19

Radiation 6 118 29
Strength 6 922 36
TNBurn 0 0 0

Turbulence 5 209 90

Table 1: Metrics for interdependence of directories.

HEBurn 19
Hydro 263

Iso 35
Plasma 30

Radiation 33
Strength 25
TNBurn 1

Turbulence 24

Table 2: Estimated test coverage.

In Table 1 the metrics are given for all of the candidate physics packages.
Next we define a metric for test coverage. In Table 2 is a rough count of the number of tests that touch

the contents of each directory. EOS is not on the list because many tests beyond the targeted EOS tests use
the EOS, so an accurate count is difficult to obtain. We thus exclude EOS from consideration as an initial
candidate because we feel the changes to EOS will result in changes to too many tests rather than having a
more targeted test suite.

We exclude TNBurn from immediate consideration because it is a new capability and there is only one
test for it.

We exclude HEBurn and Turbulence directories as initial candidates based on criterion 7.
Finally, we prioritized the remaining list by our familiarity with the package, access to SMEs, and

complexity. In some sense the exact ordering of the reduced set is not critical, though we feel strongly that
Hydro and Radiation should be the first two worked on. If we are successful at cleaning up Hydro we will
apply the methodology to all of the remaining directories in this list. Following the completion of those we
can move on to other directories in the code. The prioritized list is:

1. Hydro,

2. Radiation,

3. Iso,

4. Strength, and

5. Plasma.

3 Analysis of Selected Package

In this section we describe our approach to analyzing a selected package. In some cases we will use specific
examples from the Hydro package, but in general the methodology will be applicable to any package selected.



Code Disentanglement: Initial Plan
CCS–7–036 -9- April 23, 2014

Figure 6: Butterfly dependency graph for Hydro.

The general approach is:

1. List the packages connected to the selected package and note the relationships.

2. List the packages with circular dependencies on the selected package.

3. Order the list of connected packages that match the FC2 metric considering both the size of FC2 and
the fact that some of the connected packages may be more “package-like” than others.

4. Go through the list of connected packages and determine and document what the exact nature of the
dependencies are. In particular look at both directions of the circular dependencies.

5. Based on the study of the dependencies, make a plan for the types of code transformations one wants
to make. We will detail this step in Section 4.

In the following paragraphs we present the results of applying the steps listed above to the Hydro package.
1. From the butterfly diagram of Hydro (Fig. 6), the packages that have unidirectional dependence on

Hydro are: Graphics, HEBurn, Plasma, Radiation, Rage, Roxane, xRage. The packages that Hydro has
unidirectional dependence on are: Comm, Gravity, IO, Parser, Util, Util basic.

2. The packages with circular dependencies on Hydro are: Analysis, Common, EOS, ExternalSRCs, Iso,
MaterialInterface, Mesh, Roxane Util, Setup, Strength, Turbulence.

3. The packages with circular dependencies on Hydro that match the FC2 metric are: Analysis, Common,
Setup, Strength, Turbulence. We order this list as follows based on both the size of FC2 and whether the
connected package is considered to be a candidate for a “real package,” or is really more of a mixed bag of
source files that should probably be a member of other as yet unidentified packages: Turbulence, Strength,
Analysis, Setup, Common. Turbulence is listed before Strength since it has fewer dependencies and we want
to start with fewer dependencies and move towards more dependencies.



Code Disentanglement: Initial Plan
CCS–7–036 -10- April 23, 2014

4. The general approach we used to analyze the particular dependencies of two packages consisted of a
series of command line queries to list modules in a directory, and then look for the use of those modules in
the other directory. This was done both for the candidate package and the dependent package in question
to identify exactly the nature of the circular dependence. The second part of studying the actual source
dependency and noting relationships cannot be scripted; there is no way around having to consider every
dependency by looking at all files identified by the first process. The results of this analysis are presented in
sections 4 and 5. The cross-directory dependencies between Hydro and the five packages identified in step 3
are shown in Figures 8–12.

The analysis of Hydro and Turbulence led quickly to identification of sections of code that should likely
be removed. It is important for developers working on cleanup to have a clear process for deprecating and
removing code. See Section 4 for details of our proposal for this process.

4 Deferred Dependency Removal and Deprecation

As was described in § 3, dependencies between Hydro and packages that are positioned lower in the lev-
elization diagram will be addressed when those lower packages are subjected to this process. For example,
we can create a conceptually clear Hydro package interface that is exposed to the packages that depend on
Hydro without first addressing, e.g., Hydro’s dependence on seteng in Common.

Also, we will not clean up a dependency when it exists to support functionality that is a candidate for
deprecation and eventual removal. The determination of what code and functionality should be deprecated
and removed is clearly outside the authority of the authors of this memo. We propose a decision making
process depicted in Figure 7. The steps in this decision making process begin with a specific package or
section of code and are described below. The actors at each step are listed in italics.

1. Developer Prior to committing time to disentangling and cleaning up code within a package, the
developer will first ask whether the code is in use. This initial step can include examining run logs
and validation suites. If the developer determines that the answer is yes, as will often be the case,
the developer should proceed to step 7. If the developer cannot clearly see that the code is used, the
process moves to step 2.

2. SME The SME responsible for the functionality in question has the authority to decide whether a
section of code and the associated functionality should be deprecated. If the SME feels that the code
should not be deprecated, the process moves to step 7; otherwise the process moves to step 3.

3. SME, Management, Users Here the SME and management will engage with the users to determine if
the code is used in practice. If it is not, the process moves to step 8. Otherwise we proceed to step 4.

4. SME, Users The SME and users will identify the way in which the code is being used. We believe that
this will consist of the SME talking to users about the way they are using the functionality associated
with the code in question. The process now moves to step 5.

5. SME, Management, Users At this point a determination will be made as to whether the code in
question must be kept. Considerations might include whether the SME feels that the same capability
can be supported with different functionality, and the degree to which the existing functionality is
critical for the user to perform her or his work. If it is determined that the code must be kept the
process moves to step 6, otherwise the process moves to step 8.

6. Developer, SME The code to be kept and the associated usage will be documented, and the process
moves to step 7.

7. Developer The developer will determine if the code is covered by the test suite. If it is, the process
moves to step 10.



Code Disentanglement: Initial Plan
CCS–7–036 -11- April 23, 2014

Figure 7: A flow chart for the process by which code is evaluated for removal or clean up.



Code Disentanglement: Initial Plan
CCS–7–036 -12- April 23, 2014

8. Developer, SME The code and associated functionality will be marked as deprecated2 in the next release
of Rage. No further support will go into deprecated code. In the following release the deprecated code
will be removed. This is one of the end points of this process.

9. Developer, SME The developer and SME will develop and add a test that exercises the code in question,
and the process moves to step 10.

10. Developer The developer begins the clean up process for this section of code. This is the other end
point of this process.

There are several features of this process that are worth pointing out. First, this process ensures that
retained code is covered by the test suite. Second, we expect that in the majority of the cases, the path
through this process will be very short—the developer will immediately make the determination that the
code is in use, and will make sure that the code is covered by the test suite and proceed. Third, the
determination of whether code should be deprecated requires active user participation—users will not have
code or functionality unexpectedly vanish. Fourth, the determination of whether code, which the SME feels
should be deprecated, should actually be deprecated does not require the involvement of the developer. We
can envision that this process could require resolving a disagreement between the users and SMEs. If this is
the case, the developer is free to work on other efforts.

5 Anticipated Transformations for Selected Package

5.1 Characterizing dependencies

There are two broad classes of circular relationships between Hydro and other directories:

• intrinsically-dependent : subroutines and references to data in modules in the two directories will be
interleaved in the call stack at some point during execution; and

• coincidentally-dependent : subroutines and data in modules in the two directories will not be interleaved
in the call stack during execution; the circular relationship at the directory level consists of a set of
one-directional dependencies at the module level.

An intrinsically-dependent relationship between directories does not imply that the relationship is some-
how fundamental to the underlying algorithm. Instead, the dependence is “intrinsic” to the existing imple-
mentation; disentangling the relationship will require changes to code, not just moving or renaming files or
directories.

The dependencies between Hydro and Strength (Figure 8), between Hydro and Turbulence (Figure 9), and
between Hydro and Setup (Figure 10) are typical examples of intrinsically-dependent directories. Modules
in Hydro (hydro_1_module, hydro_3_module, hydro_14_module, hydro_mp_module, hydro_muscl_module,
and the top-level hydro_module) use subroutines in strength_module, which calls into strength_1_module

if that strength model is active, which in turn uses data from Hydro’s mesh_state_hydro_module. In the
other direction, hydro_14_module uses data from strength_data_module, so modules in each directory can
operate directly on data that nominally “belong” to modules in the other. The relationship between Hy-
dro and Turbulence is simpler, though similar; several Hydro modules call subroutines in mix_module,
while several Turbulence modules (including mix_module) directly use parameters and properties from
hydro_params, hydro_prop_module, and interface_vars_module. The relationship between Hydro and
Setup is another variation on the pattern: gfm_module and mhd_module operate directly on data from Setup’s
define_regions and merge_data, while regions_module and fndzzz_module in Setup access parameters
and properties in hydro_params and hydro_prop_module; regions_module also invokes subroutines in

2“Marked as deprecated” should consist, at minimum, of notification in the release notes for the release in which deprecation
occurs. It could also include adding additional logging for deprecated features to collect uses of such features ahead of their
removal.



Code Disentanglement: Initial Plan
CCS–7–036 -13- April 23, 2014

Figure 8: Cross-directory dependencies between Hydro and Strength, as of SVN rev 18865.



Code Disentanglement: Initial Plan
CCS–7–036 -14- April 23, 2014

Figure 9: Cross-directory dependencies between Hydro and Turbulence, as of SVN rev 18865.



Code Disentanglement: Initial Plan
CCS–7–036 -15- April 23, 2014

Figure 10: Cross-directory dependencies between Hydro and Setup, as of SVN rev 18865.

gfm_module to complete GFM-specific setup tasks and to trigger GFM-specific consistency checks. This
recurring pattern, where modules rely on use statements to operate directly on data owned by other mod-
ules without their knowledge, results in separation between data flow and control flow, which increases the
difficulty of reasoning about the overall state of data at any given point in the code.

The dependency between Hydro and Analysis (Figure 11) is an example of a coincidentally-dependent
relationship. Most of the modules in these directories are absent from the cross-directory dependency di-
agrams, because they don’t depend on any modules in the other directory in the diagram. While the
directory-level relationship between Hydro and Analysis looks bi-directional, the module-level interactions
only extend one level deep: hydro_module invokes subroutines in ie_edit_module and uses a logical pa-
rameter in ie_data_module, while editcycle_module in Analysis uses parameters and properties from
hydro_params, hydro_prop_module and interface_vars_module.

The dependencies between Hydro and Common (Figure 12) combine features of both types of relation-
ships. test_hydro_module in Hydro relies on several modules in Common (rt_module, sedov_module,
stube_module, and test_answers_module) to support construction of hydrodynamic test problems. Two
modules in Hydro (hydro_1_module and hydro_14_module) refer to tinyvel in mesh_state_tstep_module;
several other modules depend on cdt and tstepput in tstep_module. Many modules in Hydro use seteng

and engchk, from energy_module in Common. The only common feature among these groups of mod-
ules in Common is that Hydro modules are not the only modules that depend on them, so they’ve been
pushed down the hierarchy and collected in a single directory. At the same time, many modules in Com-
mon, including energy_module, depend on properties and data in hydro_params, hydro_prop_module and
mesh_state_hydro_module.

A few cross-directory dependencies are trivial to eliminate. For example, mesh_state_radiation_module
appears to depend on hydro_prop_module (Figure 13), but the entity specified in the only use statement,
hdp, is not actually used in the associated subroutine. Simply deleting the use statement eliminates the
dependency.



Code Disentanglement: Initial Plan
CCS–7–036 -16- April 23, 2014

Figure 11: Cross-directory dependencies between Hydro and Analysis, as of SVN rev 18865.

The examination of dependencies above hasn’t considered extras chains, but those chains are an im-
portant expression of cross-package relationships, and transforming them is part of this disentangling task.
Cross-directory dependencies through extras chains are not captured in the figures above because the entry
point for most chains (Common/module code extras 1.f90) is not a module, so callers don’t refer to it via
use statements. Fortran interfaces do exist for many of the extras subroutines, but the interface to a given
extras chain often lives in a module in the same directory as the subroutine that calls the chain. For example,
hydro extras int.f90 in Hydro provides an interface for the hydro_advect_extras chain, so callers in Hydro
appear to have a Hydro-internal dependence on hydro_extras_interface_module, not a cross-directory
dependence on the contents of module code extras 1.f90 in Common. Nevertheless, the extras chains gener-
ally represent variations on the intrinsically-dependent class of cross-directory relationships described above,
and they can be transformed using the same process described below.

5.2 Transforming code to eliminate dependencies

As was described in § 4, determining whether any given capability (large or small) can be deprecated and
removed is an important first step in reducing the total volume of code that needs to be modularized. Hydro’s
dependence on Turbulence highlights the value of identifying and removing deprecated code; deprecating
and removing the “VOF mix” capability in mix_module would eliminate all dependencies on modules in
Turbulence by modules in Hydro. Extending this process to entire hydro versions would eliminate even more
cross-directory dependencies and would help focus refactoring effort.

For capabilities that will be retained, the transformation described by Andy Nelson in his “EAP Refac-
toring Overview” (October 31, 2013) and summarized in § 1 can help to establish clear interfaces between
packages and to clarify data flow. At a high level, the refactoring process should consolidate the expression
of the protocol for a given phase of a calculation (e.g., “hydro”) in a high-level driver for that phase and
should establish an interface to each involved package that allows the driver to interleave calls to different
packages as required by the protocol. Individual packages should not rely on use statements to access data



Code Disentanglement: Initial Plan
CCS–7–036 -17- April 23, 2014

Figure 12: Cross-directory dependencies between Hydro and Common, as of SVN rev 18865.



Code Disentanglement: Initial Plan
CCS–7–036 -18- April 23, 2014

Figure 13: Cross-directory dependencies between Hydro and Radiation, as of SVN rev 18865.

from other packages; instead, they should provide interfaces to the caller that express their specific data
needs and expect the caller to provide that data to them.

Figure 14 shows the call graph from the top-level hydro subroutine to the routines in Strength, Anal-
ysis, Turbulence, and most of the routines in Common that are called by modules in the Hydro directory.
Transforming the code as described in § 1 will involve:

1. pushing the hydro subroutine up into a new directory (tentatively, “hydro phase”, a peer of future
driver packages for other phases of the calculation) to identify it as the driver for the hydro phase;

2. consolidating the expression of the protocol for the hydro phase by splitting large subroutines and
flattening the levels evident in Figure 14 until the sub-steps in the phase (i.e., most of the major
routines in that call graph) are all invoked directly by the driver, in the correct order;

3. moving data use statements up the call hierarchy into the top-level driver, and replacing them with
explicit arguments passed to lower-level subroutines.

After that transformation, the top-level driver subroutine will depend on existing modules in lower-level
directories, but cross-directory dependencies among those lower-level directories will have been eliminated,
and the overall relationship among the directories affected by the change will form a directed acyclic graph.
The same transformation can be applied to extras chains to consolidate the subroutines invoked in the chain
in a driver for the overall phase.

6 Completion Criteria and Next Steps

The completion criteria for the work proposed in this memo is as follows.

1. Elimination of circular dependencies between Hydro and capabilities at the same or higher levels in
the Physical Model.

2. Creation of interfaces with explicit treatment of required data between the Hydro driver and the
components of the package.

3. Coverage of the new interfaces by tests.

4. A documented methodology for cleaning up and packagizing a physics capability in xRage that can be
disseminated to EAP SMEs.

What we have presented in this document represents to us the minimum amount of preparation needed
before beginning the effort to clean up the packages described. We will carefully document our transforma-
tions and write up a detailed report of the work after it is completed. In our view, then, it is the current
document together with a follow on document that we hope will serve as a blueprint that can be shared with
SMEs for more broad application to EAP codes.



Code Disentanglement: Initial Plan
CCS–7–036 -19- April 23, 2014

Figure 14: The call graph from hydro to strength update stresses in Strength, one level down; to
ie add mat delta and ie sub mat delta in Analysis, to mix update vofcomps in Turbulence, and to cdt in
Common, two levels down; to engchk and seteng in Common, three levels down, and to strength get pfail

and strength get stresses in Strength, four levels down, as of SVN rev 18865. Our goal is to convert this
call graph into an instance of the pattern in Figure 3b.



Code Disentanglement: Initial Plan
CCS–7–036 -20- April 23, 2014

Figure 15: Butterfly dependency graph for EOS.

A Butterfly Diagrams

Butterfly diagrams for packages initally considered.

TK:tk
Distribution:
Aimee Hungerford (XTD–IDA)
Chuck Wingate (XCP–2)
Mike Steinkamp (XCP–2)
Sriram Swaminarayan (CCS–7)



Code Disentanglement: Initial Plan
CCS–7–036 -21- April 23, 2014

Figure 16: Butterfly dependency graph for HEBurn.

Figure 17: Butterfly dependency graph for Iso.



Code Disentanglement: Initial Plan
CCS–7–036 -22- April 23, 2014

Figure 18: Butterfly dependency graph for Plasma.

Figure 19: Butterfly dependency graph for Radiation.



Code Disentanglement: Initial Plan
CCS–7–036 -23- April 23, 2014

Figure 20: Butterfly dependency graph for Strength.

Figure 21: Butterfly dependency graph for TNBurn.


